

SPECIFICATIONS

- · Nominal and absolute filtration
- High build-up capability
- High quality materials
- Microglass filter medium bound with phenolic resins
- Outer cotton sleeve
- With inner core
- Nominal filtration: 0.3, 0.5, 1, 3, 5 μm
- Flow direction: Exterior > Interior
- · Flow direction: Reverse Interior > Exterior

APPLICATIONS

These coalescing cartridges can be nominal or absolute filtration with flow direction from exterior to interior, for the CR series with reverse filtration from interior to exterior, and are suitable for the separation of liquid and solid contaminants from natural gases.

They are most commonly used in the separation of dust, metal particles such as rust, condensates and oil mists.

130°C

5 bar

< 0.1 bar

Max. operating conditions

- Max. operating temperature
- Initial ∆p
- Recommended Δp for replacement 1 bar max
- Collapse pressure

43

	F-FG	C	CGSL-N	5	36	03	AA	Z	3
COMPOSITION CODE	Mod	Version	Application	Øo/Øi	Height H	Filtration	End configuration	Structure Material	Gaskets
			N = CGSL Coalescing for gases from solids and liquids Nominal Filtration	3 = 3.5"/2"	12 = 12"	03 = 0.3 μm 05 = 0.5 μm 1 = 1 μm 3 = 3 μm 5 = 5 μm	AA = Open Open AC = Open Closed AF = Open Closed with Bore	Z = Galvanised steel S1 = Aisi 304	2 = Epdm
		C =		4 = 4.5"/3.1"	24 = 24"				3 = Nbr
		Cylindrical		5 = 5.5"/4.2"	36 = 36"				4 = Viton
					72 = 72"				
		CR = Cylindrical Reverse	A= CGSL Coalescing for gases from solids and liquids Absolute Filtration						

